
Lazy Ruby
An Exploration of Enumerators

DC Ruby Users’ Group
Monthly Meeting: August 13, 2009

Michael Harrison
michaelharrison.ws

@goodmike

Friday, August 14, 2009

Taking the pulse

• is familiar with Enumerable module?

• is using or has tried Ruby 1.9?

• has programmed in a functional language?

Who here...

Friday, August 14, 2009

Roadmap

• What is laziness?

• What are enumerators?

• What’s interesting about this stuff?

Friday, August 14, 2009

Disclaimer

• The for loop still makes the world go round.

• Lazy evaluation and lazy sequences make
some problems easier to solve, and may
seem more elegant to you. Or not.

• No Fibonacci numbers have been abused in
the preparation of this presentation

Friday, August 14, 2009

Lazy evaluation

• Loosely defined as the strategy of evaluating
expressions only when needed, and only as
much as needed.

• A core feature of languages like Haskell,
Erlang, and Clojure.

• Present in most languages, at least in the if
control structure, which short-circuits
evaluation

Friday, August 14, 2009

What’s good about it?

• It’s always better not to do work you don’t
have to do.

• Code can be more concise, readable without
explicit control structures.

• You can represent, and use, infinite
sequences as though they were finite.

Friday, August 14, 2009

Enter the enumerator

• Related to enumerables

• An enumerator is like an external iterator
through a collection.

• It allows you to delay iteration through the
collection.

• Available in Ruby 1.8 as an extension. In the
core of Ruby 1.9.

• All subsequent examples are Ruby 1.9

Friday, August 14, 2009

A simple example

> my_enum = [1,2,3,4].to_enum

> my_emum.next #=> 1

> my_emum.next #=> 2

to_enum uses the collection’s each method to
generate the enumerable. As a shortcut, you can
simply type

> my_enum = [1,2,3,4].each

Friday, August 14, 2009

Other examples

> my_enum = "cat".enum_for(:each_char)

-- from Programming Ruby 1.9

• If the method takes parameters, you can pass
them to enum_for:

• You can create an enumerator that uses a
method other than each:

> my_enum = (1..10).enum_for(:each_slice, 3)
> my_enum.next # => [1, 2, 3]

Friday, August 14, 2009

Generators

natural_numbers = Enumerator.new do |yielder|
 number = 1
 loop do
 yielder.yield number
 number += 1
 end
end

You can create an enumerator with
Enumerator.new &block

Friday, August 14, 2009

This generates a lazy infinite sequence:

The variable natural_numbers is in essence
equal to the set of natural numbers. As in,
all of them.

Generators

Friday, August 14, 2009

Filters

class Enumerator
 def lazy_select(&block)
 Enumerator.new do |yielder|
 self.each do |val|
 yielder.yield(val) if block.call(val)
 end
 end
 end
end

Calling #select on an infinite sequence is a bad idea. So:

-- After Brian Candler’s suggestion in [ruby-core:19679], cited in
Programming Ruby 1.9

Friday, August 14, 2009

Filters
Say I want the first five palindrome numbers that
are divisible by 47?

p natural_numbers
 .lazy_select {|n| n % 47 == 0}

 .lazy_select {|n| palindrome_number?(n)}
 .first(5)

=> [141, 282, 1551, 14241, 15651]

Very little noise in this code. No explicit control
structures for looping or breaking.

Friday, August 14, 2009

More laziness

def lazy_map(&block)
 Enumerator.new do |yielder|
 self.each do |value|
 yielder.yield(block.call(value))
 end
 end
end

Why stop with a lazy select?

Friday, August 14, 2009

More laziness

> p natural_numbers.lazy_map {|n| n*n}.take(10)
=> first 10 squares,
 [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Friday, August 14, 2009

It’s not just for numbers

• Numbers are easy examples, but imagine:

• You need to parse the lines of a monster log
file until you find ten lines that are similar.

• You need to search the feed from a remote
service for a term.

• You need to transform the members of a
collection until you get five results that
satisfy some condition

Friday, August 14, 2009

